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Abstract

A FORTRAN 77 program that calculates fusion cross sections and mean angular momenta of the compound nucleus under
the influence of couplings between the relative motion and several nuclear collective motions is presented. The no-Coriolis
approximation is employed to reduce the dimension of coupled-channel equations. The program takes into account the effects
of nonlinear couplings to all orders, which have been shown to play an important role in heavy-ion fusion reactions at subbarrier
energies. 1999 Elsevier Science B.V. All rights reserved.
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PROGRAM SUMMARY

Title of program: CCFULL

Catalogue identifier:ADKM

Program Summary URL:
http://www.cpc.cs.qub.ac.uk/cpc/summaries/ADKM

Program obtainable from:CPC Program Library, Queen’s Univer-
sity of Belfast, N. Ireland

Computer for which the program is designed and others on which it
is operable: Any UNIX work-station or PC; the program has been
tested on DEC and DEC-Alpha

Operating systems or monitor under which the program has been
tested: UNIX

Programming language used:FORTRAN 77

No. of bytes in distributed program, including test data, etc.:
80131

Distribution format: ASCII

Keywords: Heavy-ion subbarrier fusion reactions, coupled-channel
equations, higher order coupling, no-Coriolis approximation, in-
coming wave boundary condition, fusion cross section, mean angu-
lar momentum, spin distribution, fusion barrier distribution, multi-
dimensional quantum tunneling

Nature of physical problem
It has by now been well established that fusion reactions at ener-
gies near and below the Coulomb barrier are strongly influenced
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by couplings of the relative motion of the colliding nuclei to sev-
eral nuclear intrinsic motions. Recently, precisely measured fusion
cross sections have become available for several systems, and a
distribution of the Coulomb barrier, which is originated from the
channel couplings, have been extracted. It has been pointed out
that the linear coupling approximation, which has often been used
in coupled-channels calculations, is inadequate in order to ana-
lyze such high precision experimental data. The program CCFULL
solves the coupled-channels equations to compute fusion cross sec-
tions and mean angular momenta of compound nucleus, taking into
account the couplings to all orders.

Method of solution
CCFULL directly integrates coupled second order differential equa-
tions using the modified Numerov method. The incoming wave
boundary condition is employed and a barrier penetrability is cal-
culated for each partial wave. Nuclear coupling matrix elements are
evaluated by using the matrix diagonalisation method once the phys-
ical space has been defined.

Restrictions on the complexity of the problem
The program is best suited for systems where the number of chan-

nels which strongly couple to the ground state is relatively small
and where multi-nucleon transfer reactions play less important role
compared with inelastic channels. It also relies on an assumption
that the fusion process is predominantly governed by quantum tun-
neling over the Coulomb barrier. This assumption restricts a system
which the program can handle to that where the sum of the charge
of the projectile and the target nucleiZp +ZT is larger than around
12 and the charge productZpZT less than around 1800. For most
experimental data which were measured to aim at extracting fusion
barrier distributions, this condition is well satisfied. The program
also treats a vibrational coupling in the harmonic limit and a rota-
tional coupling with a pure rotor. The program can be modified for
general couplings by directly providing coupling strengths and ex-
citation energies.

Typical running time
A few seconds for input provided. The computer time depends
strongly upon the number of channels to be included. It will consid-
erably increase if one wishes to include a large number of channels,
as for instance 20.

LONG WRITE-UP

1. Introduction

Fusion is defined as a reaction where two separate nuclei combine together to form a composite system. When
the incident energy is not so large and the system is not so light, the reaction process is predominantly governed
by quantum tunneling over the Coulomb barrier created by the strong cancellation between the repulsive Coulomb
force and the attractive nuclear interaction. Extensive experimental as well as theoretical studies have revealed that
fusion reactions at energies near and below the Coulomb barrier are strongly influenced by couplings of the relative
motion of the colliding nuclei to several nuclear intrinsic motions [1]. Heavy-ion subbarrier fusion reactions thus
provide a good opportunity to address the general problem on quantum tunneling in the presence of couplings,
which has been a popular subject in the past decade in many branches of physics and chemistry.

Thanks to the recent developments in experimental techniques, fusion cross sections can now be measured with
high accuracy in small energy intervals. Such high precision experimental data have generated a renewed interest
in heavy-ion subbarrier fusion reactions in recent years [2,3]. For instance, they have enabled a detailed study of
the effects of couplings on fusion reactions through the so-called fusion barrier distribution [4,5] and have thus
offered a good opportunity to test any theoretical framework for subbarrier fusion reactions.

Theoretically the standard way to address the effects of the coupling between the relative motion and the
intrinsic degrees of freedom on fusion is to numerically solve the coupled-channel equations, including all the
relevant channels. In the past, the coupled-channel calculations were often performed using the linear coupling
approximation, where the coupling potential is expanded in powers of the deformation parameter, keeping only
the linear term. It has been demonstrated that nonlinear couplings significantly affect the shape of fusion barrier
distributions and thus the linear coupling approximation is inadequate in quantitative comparison with the recent
high quality data of fusion cross sections [6,7]. The program CCFULL includes the couplings to full order and thus
it does not introduce the expansion of the coupling potential. Since the dimension of the coupled-channel equations
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with full space is in general too large for practical purposes, the program employs the no-Coriolis approximation,
which is sometimes referred to as the isocentrifugal approximation too, to reduce the dimension [8,9]. For heavy-
ion fusion reactions, this approximation has been confirmed to work well [10]. The program is otherwise exact and
takes full account of the finite excitation energies of intrinsic motions. It includes Coulomb excitations and uses
the incoming wave boundary condition inside the Coulomb barrier.

2. Coupled-channel equations

For heavy-ion fusion reactions, to a good approximation one can replace the angular momentum of the relative
motion in each channel by the total angular momentumJ [8,9]. This approximation, often referred to as no-Coriolis
approximation or isocentrifugal approximation, is used in the program. The coupled-channel equations then read[

− h̄2

2µ

d2

dr2 +
J (J + 1)h̄2

2µr2 + V (0)N (r)+ ZPZT e
2

r
+ εn −E

]
ψn(r)+

∑
m

Vnm(r)ψm(r)= 0, (1)

wherer is the radial component of the coordinate of the relative motion andµ is the reduced mass, respectively.E

is the bombarding energy in the center of mass frame andεn is the excitation energy of thenth channel.Vnm are
the matrix elements of the coupling Hamiltonian, which in the collective model consist of Coulomb and nuclear
components. These two components are detailed in the following section.V

(0)
N is the nuclear potential in the

entrance channel. In the program, the Woods–Saxon parametrisation

V
(0)
N (r)=− V0

1+ exp((r −R0)/a)
, R0= r0(A1/3

P +A1/3
T ), (2)

is adopted for the nuclear potentialV (0)N .
The coupled-channel equations are solved by imposing the boundary conditions that there are only incoming

waves atr = rmin, and there are only outgoing waves at infinity for all channels except the entrance channel (n= 0),
which has an incoming wave with amplitude one as well. This boundary condition is referred to as the incoming
wave boundary condition (IWBC) [11], and is valid for heavy-ion reactions, where there is a strong absorption
inside the Coulomb barrier. The program CCFULL adopts the minimum position of the Coulomb pocket inside the
barrier forrmin. Practically the numerical solution is matched to a linear combination of incoming and outgoing
and Coulomb wave functions at finite distancermax beyond which both the nuclear potential and the Coulomb
coupling are sufficiently small. The boundary conditions are thus expressed as

ψn(r)→ Tn exp

(
−i

r∫
rmin

kn(r
′) dr ′

)
, r 6 rmin, (3)

→H
(−)
J (knr)δn,0+RnH(+)

J (knr), r > rmax, (4)

where

kn(r)=
√

2µ

h̄2

(
E − εn − J (J + 1)h̄2

2µr2
− VN(r)− ZPZT e

2

r
− Vnn(r)

)
(5)

is the local wave number for thenth channel andkn = kn(r =∞).H(−)
J andH(+)

J in Eq. (4) are the incoming and
the outgoing Coulomb functions, respectively.

In order to ensure that there are only incoming waves atr→ rmin, the program CCFULL solves the coupled-
channel equations outwards fromrmin, first by setting [12]
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ψn(rmin)= 1, ψm(rmin)= 0 (m 6= n), (6)
d

dr
ψn(rmin)=−ikn(rmin),

d

dr
ψm(rmin)= 0 (m 6= n). (7)

Since the first derivative of the wave functions atrmin has been explicitly written down from Eq. (3), the wave
functions atr = rmin+h, h being the radial mesh to integrate the equations, can be determined by the Runge–Kutta
method. After the wave functions atr = rmin+ h have been thus obtained, CCFULL solves the coupled-channel
equations fromr = rmin+ h to r = rmax by the modified Numerov methods [13], since the Runge–Kutta method
may not be so efficient to solve the second order differential equations. The modified Numerov method relates the
wave functions atri+1≡ rmin+ (i + 1)h to those atri andri−1 as

ψ i+1=
(

1− h
2

12
Ai+1

)−1[{(
h2

√
12
Ai +√3

)2

− 1

}(
1− h

2

12
Ai
)
ψ i −

(
1− h

2

12
Ai−1

)
ψ i−1

]
, (8)

whereAnm(r) is defined by

Anm(r)= 2µ

h̄2

[(
V
(0)
N (r)+ J (J + 1)h̄2

2µr2 + ZPZT e
2

r
+ εn −E

)
δn,m − Vnm(r)

]
, (9)

andψ i are the wave functions atri .
Let χnm(r) be the wave function of themth channel thus obtained, i.e. it isψm(r) which satisfies the boundary

conditions (3) atr = rmin. At r = rmax, χnm can be expressed by a superposition of the incoming and outgoing
Coulomb waves as

χnm(r)= CnmH(−)
J (kmr)+DnmH(+)

J (kmr), r→ rmax. (10)

The coefficientsCnm andDnm are determined either by matching the logarithmic derivatives atrmax or by matching
the ratio of the wave functions atrmax− h to those atrmax+ h. Since the modified Numerov methods do
not automatically generate the derivative of the wave functions, the latter procedure is more suitable here. The
coefficients are then obtained as

Cnm = H
(+)(i−1)
Jm χ

(i+1)
nm −H(+)(i+1)

Jm χ
(i−1)
nm

H
(+)(i−1)
Jm H

(−)(i+1)
Jm −H(+)(i+1)

Jm H
(−)(i−1)
Jm

(11)

and

Dnm = H
(−)(i−1)
Jm χ

(i+1)
nm −H(−)(i+1)

Jm χ
(i−1)
nm

H
(−)(i−1)
Jm H

(+)(i+1)
Jm −H(−)(i+1)

Jm H
(+)(i−1)
Jm

, (12)

respectively. We have definedH(+)(i+1)
Jm ≡ H(+)

J (km · (rmax+ h)), etc., andχi+1
nm ≡ χnm(rmax+ h), etc. This

procedure is repeated for alln andm to determine the matricesC andD.
The solution of the coupled-channel equations with the proper boundary conditions (3) and (4) is given by a

linear combination ofχnm as

ψm(r)=
∑
n

Tnχnm(r). (13)

This equation satisfies the boundary condition (3) atr = rmin. At r = rmax, it leads to

ψm(rmax)=
∑
n

Tnχnm(rmax)=
∑
n

Tn
(
CnmH

(−)
J (kmrmax)+DnmH(+)

J (kmrmax)
)
. (14)
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By comparing Eqs. (4) and (14), one finds∑
n

TnCnm = δm,0. (15)

The transmission coefficients are then finally obtained by

Tn = (C−1)n0. (16)

For many examples, we are interested only in the inclusive process, where the intrinsic degree of freedom emerges
in any final state. Taking a summation over all possible intrinsic states, the inclusive penetrability is given by

PJ (E)=
∑
n

kn(rmin)

k0
|Tn|2 . (17)

The fusion cross section and the mean angular momentum of compound nucleus are then calculated by

σfus(E)=
∑
J

σJ (E)= π

k2
0

∑
J

(2J + 1)PJ (E), (18)

〈l〉 =
∑
J

JσJ (E)/
∑
J

σJ (E)

=
(
π

k2
0

∑
J

J (2J + 1)PJ (E)

)/( π
k2

0

∑
J

(2J + 1)PJ (E)

)
, (19)

respectively. In the program CCFULL, the summation over the partial wave is truncated at the angular momentum
whose contribution to the cross section is less than 10−4 times the total cross section.

3. Coupling matrix elements

3.1. Rotational coupling

In this section, we give explicit expressions for the coupling matrix elementsVnm(r) in Eq. (1). Let us first
consider a rotational coupling in the target nucleus. The nuclear coupling Hamiltonian can be generated by
changing the target radius in the nuclear potential (2) to a dynamical operator

R0→ R0+ Ô =R0+ β2RT Y20+ β4RT Y40, (20)

whereRT is parametrised asrcoupA
1/3
T , andβ2 andβ4 are the quadrapole and hexadecapole deformation parameters

of the deformed target nucleus, respectively. The nuclear coupling Hamiltonian is thus given by

VN(r, Ô)=− V0

1+ exp((r −R0− Ô)/a)
. (21)

We need matrix elements of this coupling Hamiltonian between the|n〉 = |I0〉 and|m〉 = |I ′0〉 states of the ground
rotational band of the target. These can be easily obtained using a matrix algebra [14]. In this algebra, one first
looks for the eigenvalues and eigenvectors of the operatorÔ which satisfies

Ô|α〉 = λα|α〉. (22)

In the program CCFULL, this is done by diagonalising the matrixÔ , whose elements are given by

ÔII ′ =
√

5(2I + 1)(2I ′ + 1)

4π
β2RT

(
I 2 I ′
0 0 0

)2

+
√

9(2I + 1)(2I ′ + 1)

4π
β4RT

(
I 4 I ′
0 0 0

)2

. (23)
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The nuclear coupling matrix elements are then evaluated as

V (N)nm =
〈
I0|VN(r, Ô)|I ′0

〉− V (0)N (r)δn,m

=
∑
α

〈I0|α〉〈α|I ′0〉VN(r,λα)− V (0)N (r)δn,m. (24)

The last term in this equation is included to avoid the double counting of the diagonal component.
For the Coulomb interaction of the deformed target, the program CCFULL includes up to the second order with

respect toβ2 and to the first order ofβ4. Contrary to the nuclear couplings, the higher order couplings of the
Coulomb interaction have been shown to play a rather minor role [6]. The matrix elements are then given by

V (C)nm =
3ZPZT

5

R2
T

r3

√
5(2I + 1)(2I ′ + 1)

4π

(
β2+ 2

7

√
5

π
β2

2

)(
I 2 I ′
0 0 0

)2

+ 3ZPZT
9

R4
T

r5

√
9(2I + 1)(2I ′ + 1)

4π

(
β4+ 9

7
β2

2

)(
I 4 I ′
0 0 0

)2

. (25)

The total coupling matrix element is given by the sum ofV
(N)
nm andV (C)nm .

3.2. Vibrational coupling

We next consider a vibrational coupling. Ref. [6] discusses all order nuclear couplings for the case where the
vibration can be approximated by the harmonic oscillator. In a realistic case, however, phonon spectra are often
truncated at some level, and thus the intrinsic motion deviates from the harmonic limit even when the excitation
energies are equally spaced and/or the electromagnetic transitions do not alter in the linear approximation. (See
Ref. [15] for a discussion on differences between the harmonic oscillator and the truncated oscillator, i.e. spin
systems.) In such a situation, the matrix formalism discussed in the previous section still provides a convenient and
powerful technique to evaluate the coupling matrix elements [2]. For vibrational coupling, the operatorÔ in the
nuclear coupling Hamiltonian is given by

Ô = βλ√
4π
RT
(
a

†
λ0+ aλ0

)
, (26)

whereλ is the multipolarity of the vibrational mode anda†
λ0(aλ0) is the creation (annihilation) operator of the

phonon. The matrix element of this operator between then-phonon state|n〉 and them-phonon state|m〉 is given
by

Ônm = βλ√
4π

RT
(√
mδn,m−1+

√
nδn,m+1

)
. (27)

The rest of the procedure to evaluate the nuclear coupling matrix element is exactly the same as for the rotational
case. The operator̂O is diagonalised in a physical space and then the nuclear coupling matrix elements are
calculated according to Eq. (24).

The program CCFULL uses the linear coupling approximation for the Coulomb coupling of the vibrational
degree of freedom. The Coulomb coupling matrix elements thus read as

V (C)nm (r)=
βλ√
4π

3

2λ+ 1
ZPZT e

2 RλT

rλ+1

(√
mδn,m−1+

√
nδn,m+1

)
. (28)

Again the total coupling matrix element is given by the sum ofV
(N)
nm andV (C)nm .
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Table 1
Input to the computer code CCFULL

Line 1 AP, ZP, AT, ZT

Line 2 RP, IVIBROTP, RT, IVIBROTT

Line 3 OMEGAT, BETAT, LAMBDAT, NPHONONT (if IVIBROTT=0)

E2T, BETA2T, BETA4T, NROTT (if IVIBROTT=1)

Line 4 OMEGAT2, BETAT2, LAMBDAT2, NPHONONT2

Line 5 OMEGAP, BETAP, LAMBDAP, NPHONONP (if IVIBROTP=0)

E2P, BETA2P, BETA4P, NROTP (if IVIBROTP=1)

Line 6 NTRANS, QTRANS, FTR

Line 7 V0, R0, A0

Line 8 EMIN, EMAX, DE

Line 9 RMAX, DR

3.3. Transfer coupling

The program CCFULL includes a pair-transfer coupling between the ground states. It uses the macroscopic
coupling form factor given by [16]

Ftrans(r)= Ft dV
(0)
N

dr
, (29)

whereFt is the coupling strength.

4. Program input and test run

A description of the format for the input parameters is given in Table 1. All parameters are entered in free format.
The first line contains the parameters specifying the system. AP (AT) is the projectile (target) mass and ZP (ZT)
is the projectile (target) charge. The second line is for the coupling Hamiltonian. RP (RT) is the radius parameter
rcoup of the projectile (target) used in the coupling Hamiltonian. Note that this is in general different from the
radius parameter used in the nuclear potential (2), which is defined in the seventh line. IVIBROTP (IVIBROTT)
is an option which specifies the property of the intrinsic motion of the projectile (target). If it is set to be−1, the
projectile (target) is assumed to be inert and the fifth (the third and the fourth) line will be ignored. The fusion
cross sections and the mean angular momentum in the absence of channel coupling can be therefore obtained by
setting both the IVIBROTP and the IVIBROTT to−1. When IVIBROTP (IVIBROTT) is set to zero, the CCFULL
assumes that the coupling in the projectile (target) is vibrational, while if it is set to one, the rotational coupling is
assumed.

The third line is for detailed information on the target excitation. If IVIBROT is zero (i.e., the vibrational
coupling), the CCFULL reads OMEGAT, BETAT, LAMBDAT, and NPHONONT. OMEGAT is the excitation
energy of the single phonon state, BETAT is the deformation parameter, and LAMBDAT is the multipolarity of the
vibrational excitation. NPHONONT is the maximum phonon number to be included. For example, if it is two, up to
two phonon states are included in the calculation. The CCFULL assumes the harmonic oscillator for a vibrational
coupling. The excitation energy of then-phonon state is thus given byn times OMEGAT. Sometimes a user
may want to use a different value of deformation parameter for the nuclear coupling from that for the Coulomb
coupling. The CCFULL therefore will ask the user interactively before a run whether he/she intends to use a
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different value of the coupling strength for the nuclear coupling. If IVIBROTT is one (i.e., the rotational coupling),
the CCFULL reads E2T, BETA2T, BETA4T, and NROTT. E2T is the excitation energy of the first 2+ state in
the ground rotational band of the target nucleus, BETA2T and BETA4T are the quadrapole and hexadecapole
deformation parameters, respectively. NROTT is the number of levels in the rotational band to be included. For
instance, if it is 3, the 2+, 4+ and 6+ states are included together with the ground state. The CCFULL assumes a
pure rotor for a deformed nucleus, and the excitation energy of theI+ state is given byI (I + 1) · E2T/6.

In many applications, there are two vibrational modes of excitations in the target nucleus. A typical example
is the octupole and quadrapole vibrational excitations in144Sm. The fourth line is for the second mode of
excitation in the target nucleus. The meaning of OMEGAT2, BETAT2, LAMBDAT2 and NPHONONT2 is the
same as OMEGAT, BETAT, LAMBDAT and NPHONONT, respectively. The second mode is not included when
NPHONONT2 is set to zero. OMEGAT2, BETAT2, and LAMBDAT2 are then ignored. When NPHONONT2 is
not zero, the user will be asked before a run which of the mutual excitation channels he/she intends to include in
the calculation.

The fifth line is the same as the third line, but for the projectile excitations. If there exist excitations both in the
projectile and the target, the CCFULL takes into account all the possible mutual excitation channels between the
projectile and the target excitations.

The sixth line is for the pair transfer coupling. QTRANS is the Q-value for the pair transfer channel, while FTR
is the coupling strength defined by Eq. (29). NTRANS is the number of the pair transfer channel. In the present
version of the CCFULL, NTRANS is restricted to be either one or zero. If it is zero, the pair transfer channel is not
included and QTRANS and FTR are ignored.

The seventh line is for the nuclear potential in the entrance channel (2). V0 is the depth parameter of the Woods–
Saxon potential, R0 is the radius parameterr0 in Eq. (2), and A0 is the surface diffuseness parametera.

EMIN, EMAX, and DE in the next line are the minimum and the maximum value of the colliding energy in the
center of mass frame and the interval in the energy scale, respectively. The CCFULL constructs the distribution
of partial cross sectionsσJ as a function ofJ if a single value of the energy is entered, i.e. either when EMIN=
EMAX or DE = 0.

The accuracy of the calculation is controlled by the matching radius RMAX and the mesh for the integration DR
in the ninth line. For many applications, especially for asymmetric systems such as16O+ 144Sm, RMAX= 30 fm
and DR= 0.05 fm provides sufficiently accurate results. For heavier systems, such as64Ni + 92Zr, RMAX may
have to be extended to a value as large as 50 fm.

The test case shows the fusion cross sections and the mean angular momentum of the compound nucleus for
the 16O+ 144Sm reaction. The projectile nucleus16O is assumed to be inert, while the single octupole phonon
excitation in144Sm is taken into account. The transfer channel is not included in this calculation.
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TEST RUN INPUT

16.,8.,144.,62.
1.2,-1,1.06,0
1.81,0.205,3,1
1.66,0.11,2,0
6.13,0.733,3,0
0,0.,0.3
105.1,1.1,0.75
55.,72.,1.
30,0.05

TEST RUN OUTPUT

16O + 144Sm Fusion reaction
-------------------------------------------------
Phonon Excitation in the targ.: beta_N= 0.205, beta_C= 0.205, r0= 1.06(fm)

omega= 1.81(MeV), Lambda= 3, Nph= 1
-------------------------------------------------
Potential parameters: V0= 105.10(MeV), r0= 1.10(fm), a= 0.75(fm)

Uncoupled barrier: Rb=10.82(fm), Vb= 61.25(MeV), Curv= 4.25(MeV)
-------------------------------------------------

Ecm (MeV) sigma (mb) <l>
-------------------------------------
55.00000 0.97449E-02 5.87031
56.00000 0.05489 5.94333
57.00000 0.28583 6.05134
58.00000 1.36500 6.19272
59.00000 5.84375 6.40451
60.00000 20.59856 6.86092
61.00000 52.14435 7.81887
62.00000 94.62477 9.18913
63.00000 139.58988 10.65032
64.00000 185.55960 11.98384
65.00000 234.04527 13.13045
66.00000 283.93527 14.18620
67.00000 333.26115 15.21129
68.00000 381.21017 16.20563
69.00000 427.61803 17.16333
70.00000 472.48081 18.08211
71.00000 515.83672 18.96273
72.00000 557.73621 19.80734


