⁶Li +²⁰⁸Pb Near Barrier Fusion Reaction

Y.W. Wu^{1,} Z. H. Liu¹, C. J. Lin¹, H. Q. Zhang^{1,2}, F. Yang¹, M. Run¹, Z. C. Li¹, M. Trotta³, and K. Hagino⁴

M. Irotta, and K. Hagino

1 China Institute of Atomic Energy, Beijing 102413, China

2 Institute of Physics, Peking University, 100871 Beijing, China

3 INFN- Laboratori Nazionali di Legnaro, 35020 Legnaro (PD), Italy

4 Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

 ${}^{6}\text{Li} + {}^{208}\text{Pb}$ near barrier fusion excitation function has been measured by means of the evaporation residue method with α radiation detection. The experiments were carried out at the HI-13 tandem accelerator of China Institute of Atomic Energy, Beijing. The ²⁰⁸Pb targets were bombarded by the collimated beam of ⁶Li with incident energies varied from 25.75 to 39.06 MeV in 0.58 MeV energy steps. The targets were about 350 μ g/cm² in thickness, evaporated onto copper foils which were thick enough to stop completely the recoiling heavy residues. Two sets of ΔE -E silicon detector telescope located at mean angles of +- 160° with respect to the beam direction to measure the α particles emitted by the evaporation residues. A new target was used for each beam energy. The irradiated target removed from the target frame was put into another vacuum chamber and set close to a silicon detector to detect a particles emitted by the long-lived evaporation residues in off-beam measurements. The compound nucleus ²¹⁴At formed following complete fusion of ⁶Li with ²⁰⁸Pb de-excites dominantly by 2n,3n,4n evaporations and results in a series of residual isotopes ²¹²At, ²¹¹At, and ²¹⁰At. The proton evaporation residues were not observed. The absolute cross section normalization was deduced from ⁶Li Rutherfold scattering on ²⁰⁸Pb. Then the complete fusion cross sections can be obtained by sum of those of the evaporation residues ²¹²At, ²¹¹At, and ²¹⁰At. The fusion cross sections have been calculated in terms of the coupled-channels model with CCFULL code taking into accounts one double-phonon state 3⁻ of ²⁰⁸Pb and the 3⁺ rotational excitation of ⁶Li by comparing the experimental results with the theoretical calculations and with the fusion cross sections of ${}^{16}O + {}^{208}Pb$ have been suppressed at the energies above the barrier due to the effect of ⁶Li breakup, but below the barrier, the effects of breakup are not clear.

Fig. Total fusion cross sections for ${}^{6}Li + {}^{208}Pb$