Pairing-vibration degrees of freedom in Ca isotopes excited by multinucleon transfer reactions

<u>S. Szilner</u>¹, L. Corradi¹, F. Haas², G. Pollarolo³, S. Beghini⁴, B.R. Behera¹, E. Caurier², E. Fioretto¹, A. Gadea¹, A. Latina¹, G. Montagnoli⁴, F. Nowacki², F. Scarlassara⁴, A.M. Stefanini¹, M. Trotta¹, A.M. Vinodkumar^{1,5}, Y.W. Wu¹

¹ INFN, Laboratori Nazionali di Legnaro, Italy
² Institut de Recherches Subatomiques, Strasbourg, France
³ Dipartimento di Fisica Teorica, Universitá di Torino, Italy
⁴ INFN, Dipartimento di Fisica, Universitá di Padova, Italy

⁵ Department of Physics, Tokyo Institute of Technology, Japan

Transfer reactions are known to be a useful tool in particle-particle correlation studies. In inclusive multinucleon transfer (MNT) measurements [1], attempts to identify pair transfer modes were based on the study of total or differential cross sections, and in neither case a selective population of specific Q-value ranges was reported. In MNT reactions of ⁴⁰Ca scattered on different targets with closed and semi-closed shells (²⁰⁸Pb, ⁹⁰Zr and ⁹⁶Zr), recently studied using the LNL time-of-flight spectrometer, a selective population of a 6 MeV excitation energy region in ⁴²Ca was observed [2]. Figure shows the total kinetic energy loss (TKEL) of the two neutron pick-up channel together with theoretical predictions (Complex WKB). As can be seen, the TKEL distribution displays a well defined maximum that is shifted to high energy losses, leaving unpopulated the ground states. By looking at this final population and the known low energy spectrum of ⁴²Ca, we have attributed such energy population to states with two neutrons in the $2p_{3/2}$ orbital, i.e. to the excited 0^+ states that were interpreted as corresponding to the pair vibrational states. This is in agreement with the large scale shell model calculations [3], whose obtained strength distribution closely shows that there is a strong concentration of $(p_{3/2})^0$ strength near an 42 Ca excitation energy of ~ 6 MeV. If these states are preferentially populated in the transfer reaction, as expected for the pair mode, this non diluted strength concentration explains the experimentally observed TKEL distributions.

Figure 1: Left: Experimental (histograms) and theoretical (curves) TKEL distribution of the +2n channel in ${}^{40}\text{Ca}+{}^{208}\text{Pb}$. Right: The strength function S(E) from shell model calculations after convoluting with Gaussian of two different widths (300 keV and 1.5 MeV).

- [1] L. Corradi et al., Phys. Rev. C 66, 024606 (2002) and refs. therein.
- [2] S. Szilner et al., Ann. Rep. of LNL; submitted to Phys. Rev. Lett..
- [3] E. Caurier et al., *Phys. Lett.* B, 240 (2001).