Polarization Effects on the ${}^{3}\text{He}(d, p){}^{4}\text{He}$ Fusion Reaction in the ${}^{3}/{}^{2^{+}}$ Resonance Region

S. Oryu¹ and S. Gojuki²

¹Department of Physics, Tokyo University of Science, Noda 278-8510, Japan ²SGI Japan, Ltd. Yebisu Garden Place Tower 4-20-3 Ebisu Shibuya-ku, Tokyo 150-6031 Japan

The nearest resonance region above the ³He-d threshold is investigated by using the three-body Faddeev formalism in the n-p-³He system for the ${}^{3}\text{He}(d, p){}^{4}\text{He}$, and ${}^{3}\text{He}(d, d){}^{3}\text{He}$ reactions. The AV14-NN potential with the ${}^{1}S_{0}$, ${}^{3}S_{1}$ - ${}^{3}D_{1}$ partial waves is adopted, while the p-³He, and n-³He effective interactions are constructed by using the well known Resonating Group Method (RGM) in which only the ${}^{1}S_{0}$ interaction is used in our first trial. There is a well known $3/2^+$ resonance state of ⁵Li which appears at around $E_{lab} = 450 \text{keV}$ above the d-³He threshold. However, we do not care about the $3/2^+$ resonance because we adopted only the ${}^{1}S_{0}$ state for the p- ${}^{3}He$ and the n- ${}^{3}He$ effective interactions. These states are given by the rank=1 EST expansion method. Our present aim is to clarify the evidence of the three-body effects in the $3/2^+$ resonance region. For this purpose, we compared the polarized ${}^{3}\overrightarrow{\text{He}}(\overrightarrow{d},p){}^{4}$ He reaction cross section with unpolarized ${}^{3}\text{He}(d,p){}^{4}$ He one in the resonance energy region. The two-cluster RGM results are also referred in the ${}^{3}\text{He}(d, d){}^{3}\text{He}$ reaction. The total spins and parities are adopted from $J^{\pi} = 1/2^{\pm}$, to $9/2^{\pm}$. It is found that the polarization cross section is enhanced as much as twice of the unpolarized one at 90 degree. In the comparison with the two-cluster result, this fact may suggest that the three-body treatment in the fusion energy region is very important.

Figure 1: The total cross sections of the ${}^{3}\text{He}(d, p){}^{4}\text{He}$ reaction. The lowest doted line is the unpolarized total cross section, while a set of the upper lines illustrates the polarized cross sections in which the scattering angles are changed from 0 degree (the lowest) to 90 degree (the highest).

- [1] R. B. Wiringa *et al.*, Phys. Rev. **C29** ,1207 (1984).
- [2] S. Gojuki, S. Oryu, and S. A. Sofianos, available from the Los Alamos e-print archive as nucl-th/0112020
- [3] S. Gojuki, S. Oryu, Modern Physics Letters A-18 302-305 (2003)