Strong n- correlations in the t+t fusion reactions observed in the muon catalyzed t-t fusion

<u>T. Matsuzaki</u>^a, K. Nagamine^{a,b}, K. Ishida^a, N. Kawamura^{a,b}, Y. Matsuda^a, H. Imao^c, M. Iwasaki^a, S.N. Nakamura^{a,d}, M. Kato^e, H. Sugai^e, M. Tanase^e, K. Kudo^f, N. Takeda^f, G.H. Eaton^g.

^aRIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
^bKEK, 1-1 Oho, Tsukuba, Ibaraki, 305-0801 Japan
^cUniversity of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033 Japan
^dTohoku University, Aramaki, Aoba-ku, Sendai, 980-8578 Japan
^eJAERI, 2-4 Shirane, Tokai, Naka-gun, Ibaraki, 319-1195 Japan
^fAIST, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 Japan
^gRAL, Chilton, Didcot, Oxon,OX11 0QX UK

Muon catalyzed t-t fusions (t-t μ CF) are spontaneously produced by negative muons stopping in a tritium (T₂) target. The (t μ^{-}) atoms are formed by muons binding to triton nuclei (t), and then collide with T₂ molecules to form (tt μ^{-}) mesomolecules. The t-t fusion reactions occur in the framework of (tt μ^{-}) molecules under an extremely low energy circumstance, and induce three-particle decay at the exit channel. After the t-t μ CF process, muons are liberated and participate again in the next t-t μ CF reaction. The t-t μ CF process is expressed by eq. (1).

 $t + t + \mu^{-} \rightarrow (tt\mu^{-}) \rightarrow \alpha + n + n + \mu^{-} + Q (11.33 \text{ MeV}) \quad ----- (1)$ $\rightarrow (\mu^{-}\alpha) + n + n + Q \qquad ----- (2)$

With a certain probability, the muon is captured by the α -particle to terminate the t-t μ CF cycle as shown in eq. (2); the phenomenon is called muon sticking.

We conducted neutron and X-ray measurements associated with the t-t μ CF process using a high-purity tritium solid target. The observed fusion neutrons showed a continuous energy distribution with a shoulder at 6 MeV and the maximum energy at 9 MeV. This feature is not consistent with the Q-value and the three-particle decay without any particle correlations at the exit channel. The obtained neutron-energy distribution was well reproduced by a simple model with two (higher and lower) neutron-energy components, which suggested an existence of strong n- α correlations in the three-particle decay at the exit channel [1]. In the X-ray measurement, we observed clearly K_{α} X-rays originating from ($\mu^{-}\alpha$) atoms formed in the muon sticking process (2), and determined Doppler shift broadening width (DSBW) corresponding to the average recoil energy of the ($\mu^{-}\alpha$) atoms in the target. The obtained small value of DSBW also supported the existence of strong n- α correlations, where one neutron took away large amount of the Q-value in the t+t fusion reactions, and the remaining low kinetic energy was transferred to the α -particles. Details of the t-t μ CF process, the experiment, the results and analysis are reported, and a discussion on particle correlations in the t+t reaction is conducted. [1] T. Matsuzaki, K. Nagamine, N. Kawamura, K. Ishida *et. al.*, Phys. Lett. B557 (2003) 176.