Subbarrier fusion enhancement in neutron-rich radioactive ¹³²Sn on ⁶⁴Ni*

J. F. Liang¹, D. Shapira¹, C. J. Gross¹, J. R. Beene¹, J. D. Bierman², A. Galindo-Uribarri¹,

J. Gomez del Campo¹, P. A. Hausladen¹, Y. Larochelle³, W. Loveland⁴, P. E. Mueller¹, D. Peterson⁴, D. C. Radford¹, D. W. Stracener¹, and R. L. Varner¹

¹Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
²Physics Department, AD-51, Gonzaga University, Spokane, Washington 99258, USA
³Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37966, USA
⁴Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA

The cross section for subbarrier fusion of heavy ions is often found to be enhanced over the one-dimensional barrier penetration model prediction. It has been suggested that the fusion yield may be further enhanced when the reaction is induced by unstable neutron-rich nuclei[1, 2, 3, 4]. If this is true such reactions may be applied to synthesize heavy elements.

We have measured evaporation residue cross sections using neutron-rich radioactive 132 Sn beams incident on a 64 Ni target in the vicinity of the Coulomb barrier. This is the first experiment using accelerated 132 Sn beams to study nuclear reaction mechanisms. The average beam intensity was 2×10^4 particles per second and the smallest cross section measured was less than 5 mb. A large subbarrier fusion enhancement was observed compared to evaporation residue cross sections for 64 Ni on stable even Sn isotopes. The enhancement cannot be accounted for by a simple barrier shift. Coupled-channels calculations including inelastic excitation and neutron transfer underpredict the measured cross sections below the barrier. The presence of several neutron transfer channels with large positive Q-values suggests that multinucleon transfer may play an important role in enhancing the fusion of 132 Sn and 64 Ni. Future experiments using even more neutron-rich radioactive beams will be discussed.

*Research sponsored by the Office of Science, U. S. Department of Energy, under contract DE-AC05-00OR22725 with UT-Battelle, LLC.

- [1] N. Takigawa, H. Sagawa, and T. Shinozuka, Nucl. Phys. A538, 221c (1992).
- [2] M. S. Hussein, Nucl. Phys. A531, 192 (1991).
- [3] C. H. Dasso and R. Donangelo, Phys. Lett. B 276, 1 (1992).
- [4] V. Yu. Denisov, Eur. Phys. J. A 7, 87 (2000).